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AD1 methods for elliptic partial differential equations were proposed already in 
the 1950s. Particularly well known were the algorithms due to Peaceman and 
Rachford [ 111, and Douglas and Gunn [6]. In recent years, AD1 methods were 
advocated to solve parabolic and hyperbolic p.d.e.3, see Beam and Warming [2], 
and Briley and McDonald [4]. The motivation for AD1 schemes was to combine 
the convenience of one-dimensional easily invertible operators and the uncon- 
ditional stability of implicit methods. 
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Experience with such AD1 solvers, both for the Navier-Stokes, and Euler 
equations [9, 131 has not shown the large expected gains over direct explicit linite- 
difference algorithms. This is so because in approaching steady state the rate of con- 
vergence is very sensitive to the Courant number (appropriately defined for each 
case) and it decreases rapidly, i.e., the iteration count grows rapidly, when the 
calculation is carried out away from an optimal time-step. At the optimal Courant 
number, the convergence rate is comparable to those of explicit methods. 

A procedure of using an optional sequence of time steps has been used by 
previous researchers [6, lo] to greatly accelerate the convergence to steady state of 
the heat equation. It is not at all clear that this procedure can be applied 
efficaciously to more complicated problems such as nonlinear systems of equation. 
We sought to make use of a preconditioning procedure whose rationale is 
immediately applicable, not only to the scalar parabolic problem, but to systems as 
well. The new preconditioned algorithm can be further accelerated to steady state 
by using the above-mentioned technique of sequential times-step even if they are 
not the optimal ones for the unpreconditioned problem. 

The present research concentrates on the parabolic case. A subsequent paper will 
deal with hyperbolic partial differential equations. In this work we set out to: 

(a) Analyze the behaviour of the standard ADI algorithms in converging to 
steady state. The number of time-steps (or iterations) necessary to converge to 
steady state turns out to be most easily analyzed in terms of the square of the ratio 
of the &-norm of the residual to the &-norm of the initial residual. The underlying 
hypothesis of this analysis is that the residual attenuation is relatively independent 
of. the initial and boundary conditions, provided they are of the (common) types 
that introduce many frequencies into the problem. The results of this research sub- 
stantiate this hypothesis. All this is covered in Section 1. 

(b) Devise a new algorithm which will “correct” the standard AD1 schemes in 
the sense that it will speed up convergence to steady state without changing the 
accuracy of the solution and having only a weak dependence on the Courant num- 
ber I, for ;1 larger than its optimum value for the standard scheme. Also the new 
algorithm should leave the implicit part of the scheme unchanged. This is done in 
Section 2. 

(c) Test the new corrected algorithm for a variety of situations: Dirichlet 
problems for uniform grids of many mesh sizes; mixed Dirichlet-Neumann 
problems; problems defined on stretched grids and/or problems with variable coef- 
ficients. The results of the numerical experimentations are described in Section 3. 

1 

Consider the standard parabolic diffusion equation in two space dimensions 

(1.1) 
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Using the usual scaling procedures we get the following problem on a square, 

(1.2) 

with u (independent of t) prescribed on the boundaries. We are interested in the 
steady-state solution to ( 1.2). 

A widely used numerical method for reaching the steady-state solution, u*(x, ?;), 
of (1.2) is to employ the unconditionally stable backward Euler algorithm in delta 
form with approximate factorization (AF) (see, e.g., Beam and Warming [2]). This 
finite-difference scheme may be written as follows 

(1 - j.h:.)( 1 - if!St)(vj(; - I) - v,‘l;-)) = zi((i’, + ~3:) ((Lb ; 1.3) 

with t:$?i = uO(j Ax, k AL’), 0 < rx < 2, and where c$) = ~(j Ax. k Ay, n At) is the 
finite-difference approximation to u(x, J, t) and 

i. = At/h’, h = Ax = Ay = nlN. 

The difference operators 6: and SF are given by 

(32 c”‘.’ = q ,.k - 2$’ + q I.k 
.‘; ].h 

and 

8:. q = v;‘,) 
3 -1 

- 2J,.!“’ + [:p~. 
/.A 1.X -- I . 

The case x= 1 is known as the Douglas Gunn scheme: r=2 is ihc 
Peaccman-Rachford algorithm. 

We now define the deviation c$’ of the evolving solution cj,‘i’ from the desired 
finite-difference approximation to the steady state, t:,Tx.. The function v* satisfies the 
equation 

; (6; + 8;,) v,Tk = 0 (1.4) 

with c* having boundary values which correspond appropriately to the boundary 
values of u*. This deviation is given, therefore, at any time t = n At by 

>;;;I = $;’ - t:* 
1.k. il.51 

At this point, WC introduce the assumptions that L$) = vll;i on the boundaries and 
that the initial values of u, and hence also of v, arc such that on the boundaries they 
coincide with the prescribed boundary conditions. Note that these arc reasonable 
assumptions that agree with standard procedures for problems such as (1.2). A con- 
scquencc of these assumptions is that C” for every n 2 0 vanishes on the boundaries. 
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Using Eqs. (1.3) (1.4), and (1.5) we find that E” satisfies 

(1 - ns;)(l - ns;)(&,;+ l) - &$J) = an@; + 6;) &J,$ (1.6) 

with homogenous boundary conditions. Since .s” is zero on the boundaries: (x = 0, 
0 9 y 6 rcn; x = rc, 0 < y < n; 0 6 x < rc, y = 0; 0 d x < rr, y = z}, it may be represented 
as an interpolation polynomial in the form of a finite double-sine series. The explicit 
representation is 

N-l N-l 

~J,rk) = d”)(xj, yk) = C 1 Aj$ sin(px,) sin(qy,), 1 <j, k<N- 1, (1.7) 
y=l p=l 

where N= n/h is the number of mesh intervals in either direction and hence 
xj = jrc/N, y, = kn/N. The coefficients AZ; are given by 

Ari = $ yfl “2’ E$ sin( jzp/N) sin(krcq/N), ldp,q<N-1. (1.8) 
J=l k=l 

The identity (1.8) is easily established by substituting (1.7) into (1.8) and using the 
formula 

where 

p=v 
p # v. 

Next we define the &-norm of sJk in the following way: 

Substituting (1.7) into (1.11) and using (1.9) gives 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

The formula (1.12) is basically Parseval’s relation for the present case. 
At this point, we would like to motivate the manner in which to investigate the 

convergence to steady state of the algorithm (1.3). Upon evolution (n increasing) 
the steady-state term 

R, = (l/h*)@; + S;) uJ”k’ = (N2/rc2)(s; + “f) z@ 
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should decrease towards zero and its norms should behave similarly. In running 
practical codes, practitioners monitor some kind of a norm of what is known as the 
residual; i.e., the steady-state equation. Often the maximum norm is utilized. WC 
propose to use the &-norm for the following reasons: 

(a) it is more efficient on parallel computers while comparable in implemen- 
tation on scalar machines, 

(b) stability analysis usually uses the &-norm, 
(c) the convergence analysis to be presented is conveniently carried out for 

the &-norm, and 

(d) we do not know how to carry out the analysis for the maximum norm. 
Note that we are dealing with a different kind of convergence than the classical one. 
In the classical case, one considers the norm of i;$) - u( j Ax, k Ay, n At). as 
AX, do + 0 (i.e., N + x) Vn At ,< T. In the present case, however, WC base the 
analysis on the deviation E$) as defined in (1.5), for N fixed as n increases. In these 
circumstances, the L, and the maximum norms are mathematically equivalent. 

Because of Eq. (1.5), WC have (62, + Sf.) LJ;(;; = (SZ, + S-t) cl,;). We now evaluate the 
L,-norm of the residual using this relation, Eq. (1.7) and the definitions of the 
operator Ss, 6:, 

= -4 “c’ y /f(n) ’ P,~[sin2($v)+sin2($)][sin~sin~~ 
p--l y=l 

Using (1.11) and (1.12) this becomes 

At this point, it is ncccssary to establish the connection between AF,‘J and nco’. We 
do this 

P.4, 
by substituting (1.17) into (1.6) and operating with 6:. and b; to obtain 

\’ I .Y I 

,c, ,T, ((1 +4i{i)(! +4;.v]:)[A~~~“-G,,,A~~]} sinysin%=O, (1.14) 

where 

and 

<?j = sin’(np/2N), qi = sin(nyj2N) 

Gp., = 
1 + u*gYf; + (1 -a) a(<; + r/i) 

(1 + d;)(l + aq:) 
(1.15) 
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with cr = 41. For (1.14) to be satisfied we must have 

A(“+l)= G,,A$ 
P.4 

Vldp,qdN-1 

Consequently, 

Ar; = G” A(O). 
P.4 P.4 

(1.16) 

(1.17) 

This is the relation we were seeking and upon substituting into (1.13) we have 

Note, from (1.15), that if we let <i and rf vary continuously (i.e., N-+ 0~)) then 
G,, = G, the amplification factor for the pure initial value problem. For the sake of 
completness, and also because 

EC”) -+ 0 as (6:+6:)8(“)+0 

we rewrite the norm of E(“) equation (1.12) in term of the A$),$ i.e., 

N-1 N-l 
llsk’l12=4 c c G;:qC@j12. 

p=l q=l 

(1.19) 

It is clear from (1.18) and (1.15) that the norm of the residual depends on the num- 
ber of grid points, N the number of time-steps, rz, the Courant number A and the 
initial deviations as reflected in A, q. co) Of course the Ar$s are not known a priori, 
and are in a sense arbitrary. The deviations vanish on the boundaries, however, and 
so it is reasonable to consider a category that generalizes to our two-dimensional 
case the triangular initial distribution used by Richtmyer and Morton [l], in their 
expository first chapter. This family is characterized by having Fourier coefficients 
A$‘: (1 < p, q < N - 1) whose magnitude is given by 

IA(O)/ = K 
P.4 

/ 

0 for some p, q 

1 (1.20) 
9 ’ sin2(pn/2N) + sin2(qn/2N) 

for rest ofp, q, 

where K is a constant. Two examples of members of this family are given by the 
regular square-based pyramid (see Fig. 1) of height C, 

’ I 
0, p#q, or p=q even 

A?;= 2~ 1 (1.21) 

9’ sin2(rcp/2N)’ 
p=q odd. 
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FIG. 1. Initial condition for test problem. 

and by a square-skirted cone of height C 

’ i 

Q, P, 4 even 
A;; = 

(-) (Pfds 1 (1.22) 

N* ’ sin2(rcp/2N) + sin2(rrq/2N) 

substituting (1.21) and (1.22) into (l.lS), we get for the norms of the residuais t 
following expressions, respectively, 

,,Rn,,’ =F “2’ G;; 
p=l 
p odd 

(1.23) 

and 

llM’=~ 16c2 Nf’ Nf’ G;yq, 
p=l q=l 
podd qodd 

(1.24) 

We are most interested in the attenuation rate of the L,-norm of the residual, given 
by 

(1.25) 

For the initial deviations described by (1.21) and (1.22) we get, respectively, 

(1.26) 

p’=$ Nf’ Nf’ G;;. 
p=l q=l 
odd odd 

(1.27) 

Note, from Holders’ inequality, that 

p; >, pp. (1.28) 



8 ABARBANEL, DWOYER, AND GOTTLIEB 

This provides us with an upper bound on the rate of attenuation of the norm of the 
residual per time-step. 

Let us first start by considering the properties of p: for the Douglas-Gunn case, 
CI = 1. For the family of initial conditions given by (1.22) we write the expression 
for p:, using (1.27) and (1.15), 

4 N-l N-l 

pT=TFp;l q;l 
1 + c2 sin2 9, sin2 $+, 2 

(l+ 0 sin2 0,)( 1 + ’ 0 sin2 $,) 1 (1.29) 

odd odd 

where 

%,=Z, *q=f$ 0=4A. 

It is shown in [l, Appendix l] that the summation in (1.29) can be carried out 
explicitly and be expressed in terms of elementary functions as follows: 

p~=[(1+a)-“2tanh(N~/2)-~,]2+[1-II,-(1+~)-”2tanh(N~/2)]2+24~, 
(1.30) 

where 
/1,=(1/2) ~(1 +cre312 tanh(N{/2)+ (1/2)N(L+~~-‘[cosh(N1;/2)]-~ (1.31) 

and 

[=2 tanh-‘[(1 +cJ)~‘~]. (1.32) 

It may be verified that p: is a positive concave function taking the value of unity 
at CJ = 0 and 0 = co. Numerical evaluations of (1.30) have shown that the location 
of the minimum hardly changes for N > 4. In fact, a very accurate prediction for 
this minimum may be found by letting N + co in (1.30). One then finds 

lim p:=l-3z+3z2+z3-2z4+z6 
N-CC 

(z= (1 +o)-“2). (1.33) 

The minimum of p: is found at z = 0.5128685 or c = 2.801788. 
The value of p;, which is the attenuation rate per time-step of the norm of the 

residual, at that point, is lIR, 11 ii,//lROll 2 = 0.265223. 
The behaviour of p: shows that even though the AF-scheme is unconditionally 

stable it is not beneficial to use too large a time-step (CT + 1). This phenomenon is 
also known for hyperbolic p.d.e.‘s [ 11. 

A different analysis, for the diffusion equation case, was carried out by 
Wachspress (see [lo] and references therein) who considered the behaviour of the 
solution (rather than the residual) in a single time-step. He investigated the quan- 
tity 

min max ) G,,,/ 
(r P.4 
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and showed for the Peaceman-Ratchford scheme, r = 2, that for constant time-step 
the optimum i is proportional to N. The difference in the results stems from the fact 
that we considered the behaviour of the norm of the residual for a particular family 
of initial deviations rather than the behaviour of the solution, 

While the motivation for investigating pf, see Eq. (1.28), is based on the idea of 
obtaining an upper bound on the rate of attenuation of the norm of the residual, 
there clearly are features of the behaviour of the residual that cannot be adequatley 
explained by p:. We arc thus constrained to consider also (r = 1) 

4 h; 1 :Y I 

i 

1 + ~~‘sin’ (I,, sin’ II/, 

1 

211 

pi=x+, q;, (l+ asin’O,)(I +osin’$,) 
odd WJd 

In [ 11, Appendix 1 ] it is shown that 

d= 211 zn zc ) /LO 
I n:. 

where for 061,<211- 1, 

1 
n,= -(2n-l)! 

d 
(?2n I 

c’g’ &p ,- l [(u2 + au)- I” tanh Ne] 
0 - I 

and for I = 2n. 

with 

e = tanh 1 [(I +g “‘1. 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

We were not able to find a simpler exact analytic representation to pi than 
(1.35) (1.38). However, a good approximation, uniformly valid in IT, N and n is 
derived in [ 1, Appendix 23. Moreover, (1.35) is easily and speedily evaluated 
numerically for various ranges of the parameters 0, n, N. In particular, one may ask 
what is the number of iterations required to reduce the initial residual by a certain 
large factor 10”‘. Figure 2 shows the predictions of Eq. (1.35) (for the families of 
initial deviations) in comparison with values obtained using the AF-solver (1.3). 
The results obtained from the finite-difference equations (FDE) solver arc insen- 
sitive to initial conditions. Details of the numerical experimentations are described 
in Section 3. One feature which the numerical work (both evaluating (1.35) and 
using the FDE solver) brought out was that for CJ large enough, the number of 
iterations necessary to converge is independent of the mesh N. Another feature was 
that n, the number of steps necessary for convergence, increases linearly with CJ for 
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10 1 1 I 

1 10 lo2 1 

o = 4At/Ax* 

FIG. 2. Number of iterations to converge to steady state for approximate factorization implicit 
backward Euler scheme vs. Courant No. Comparison of prediction and numerical experiments. 

large B. This linear-dependence behaviour can be extracted directly from the 
derivation in [l, Appendix 21. 

The behaviour and nature of the solution to the AF-solver is thus explained. It is 
clear that it is desirable to improve its performance, particularly for large c. This 
topic is covered in the next section. 

2 

The problem of solving the Laplace operator is well known and ADI methods 
were proposed for it in the 1950s see [lo, 121. Convergence to steady state was 
greatly improved by taking cyclical relaxation factors (or, in terms of the parabolic 
evolution operator, cyclical time-steps). Later multigrid methods [3], accelerated 
the convergence process. These improvements became more difficult to apply to 
various cases of practical importance such as variable and/or stretched mesh grids, 
mixed Neuman-Dirichlet boundary conditions, nonconstant coefficients, etc. 

Because of the great effort already invested in existing AF-algorithms, we were 
looking for an algorithmic correction which would satisfy the following constraints: 

(a) leave the implicit AF part of the algorithm unchanged, 
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(b) the correction to be introduced should be explicit and easy to program, 
(c) the correction should be robust in the sense that it need not be line-tuned 

for different mesh sizes, different grid stretchings, different mixes of the boundary 
conditions, etc., 

(d) generalization to the three-dimensional case should be obvious, and 
finally 

(e) the number of iterations to convergence should be roughly the same for a 
large range of (T and be competitive with other methods of accelerating convergence. 

It is clear from the analysis of the last section that the nonbenign behaviour of p,‘, 
for large u stems from the fact that as the Courant number /I = ai increases, every 
G,,,, for any fixed mesh approaches unity uniformly for all the frequencies p and y. 
In these circumstances P: will also approach unity as g increases. This behaviour is 
due to the quadratic term, a2 sin’ O,, sin* tiq: introduced by the AF. This fact has 
been noted before, see for example [S, 71. 

The main idea was not to increase the efficiency of the AF-algorithm by devices 
such as cyclic time-step and multi-griding but rather by modifying the scheme itself. 
Note the form of G,,,, see (1.15), 

G -1 +(T*~~~:+(l--))(r(5~+yl:) 
I’4 - (1 +a#(1 +a$ . 

(2.1 j 

To bound Gp-‘, away from unity, for large c, we propose the following modification 
to (2.1), 

G (.,)= 1 +(I -44r;+?;)+a*5;~~(1 --y(<:,+r$) 
P.Y r 

(1 + d;)u + q;) 
(2.2) 

where for stability 0 < 7 d I. It remains to bc seen whether one can predetermine an 
optimum value of y, in the sense that pz is minimized for large (T. Before that, 
however, we would like to explain the choice of the functional form of the correc- 
tion term, (<i-t vi). This is best done by going from the Fourier space to the 
physical one. The new algorithm now differs from the original one, by an additional 
expiicit term on the right-hand side of (1.3), as follows: 

Now, the virtue of the delta form of (1.3) is that upon convergence, i.e., when 
++ 1) + G$), the vanishing of the right-hand side implies (6: + 6:) $1) -+ 0; i.e., the 
steady-state equation is satislied. This feature is maintained in the new algorithm 
(2.3) since the operator I+ 3.6:6; is invertible and its inverse has a norm less than I. 

To estimate 7, we start by asking what value of y will maximize the rate of reduc- 
tion of the residual in one time-step or, equivalently, what 7 will minimize p: for 
large 0. 
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odd odd 

=srnf’ ~~1[l-y(sin2CI,+sin26j)]2 
k=l j=l 

(2.4) 

where 

N 
m=-. 

2 

Equation (2.4) may be rewritten as 

i-3 ,;I 1 - 4Y, SI + 2Y2(Z + S2)Y (2.5) 

where 

Thus, for 0 large 

p: - 1 - 2y + iy” 

and p: is minimized at y = 0.8. Note that this result is independent of the mesh size 
and the value a. One would then expect the effkacy of the correction to be 
insenstive to changes in mesh size, to grid stretchings, etc. Numerical evidence con- 
firms this property. This value of yopt = 0.8 was obtained on the basis of analyzing 
the improved behaviour of p:. Numerical experimentarion with p: (2.2), as well as 
with the finite-difference algorithm (2.3) showed yopt for a wide range of N and n to 
be 0.8 < yopt , < 0.9 with very little sensitivity in this range. We thus recommend the 
use of the predicted value yopt = 0.8. Figure 3 shows the variation in time-steps ver- 
sus ,I for various mesh sizes N, both for the uncorrected AF-solver and for the 
modified algorithm. 

Numerical experimentation has shown that further improvement is obtained by 
running the modified algorithm with two alternating time-steps: one corresponds to 
the desired I, and the other is for A= 0( 1). Details are presented in Section 3. 

3 

Numerical Results 
The purpose of the numerical calculations to be presented in this section is 

threefold: 
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----E011.3)lci=l) 
~ EQ 12.3! ((I = I I 

10 L .~.. i - ..-. --ml-. - 
1 IO Id 1 

0 = 4AtlAx* 

FIG. 3. Comparison of performance of standard backward Euler ADI schcmc (I<q. ( 1.3). 1-2 1 ) with 

new algorithm (Eq. (2.3). 3~ : I ). 

(a) To test the validity of the analysis by comparing the number of iterations 
(time-steps) to converge to steady state n as a function of 0 as predicted by the 
theory-to the actual results obtained by the finite-difference scheme (1.3). 

(b) To test the quality of the improvement predicted for the new corrected 
algorithm (2.3). 

(c) To test how this new algorithm will perform when applied to situations 
not covered by the analysis such as stretched grids and mixed Dirichlet-Neumann 
boundary conditions. 

Figure 2 shows a log-log graph of n, the number of iterations required to reduce 
the L:-norm of the initial residual by a factor of lo*, versus o=44t/Ax-*. This is 
done for various mesh sizes, IV= 8, 16, 32, 64, 128. The full lines are the theoretical 
predictions given by (1.34). The symbols are the results of individual runs using the 
AF finite-difference scheme (1.3) run to the same tolerance of 10m8 of the ratio of 
the residual norms. The initial condition used was a regular pyramid whose Fourier 
coefficients are given by (1.21); the boundary conditions were homogeneous. Note 
that this initial condition is different from the one implied by (1.34). We did this to 
demonstrate the insensitivity of the prediction to different initial conditions as long 
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as they all introduce many frequencies into the problem. In fact, when the 
scheme (1.3) is run with initial conditions corresponding to (1.22), rather than 
(1.21), the numerical results lie on top of the predicted curves. Further experimen- 
tation with the initial conditions (such as truncating the pyramid by 30%) and with 
the boundary conditions (such as replacing the zero boundary values with linear 
segments with discontinuous slopes) gave essentially the same answers as shown on 
the graph. The agreement shown in Fig. 2 between the predicted and actual finite- 
difference runs seems to substantiate the hypothesis underlying the present analysis; 
namely, that if the initial conditions and/or the boundary condition introduce many 
frequencies into the problem, then the representation of the residual attenuation, 
given by Eq. (1.34) is appropriate. All of the above was done for the a = 1 case 
(Douglas-Gunn); for c1= 2 similar results were obtained. 

In Fig. 3, we compare the performance of the standard AF-scheme, (1.3), with 
that of the corrected algorithm (2.3) with y = 0.8. This is done for two meshes, 
16 x 16 and 32 x 32. The dashed lines are the uncorrected results, and the solid lines 
are computed with the new algorithm. 

First, note the improved performance as (T is increased. Another interesting 
feature of the results for the corrected scheme is the shallowness of the y1 versus CJ 
curve for 0 > crept. Indeed note how for large ~$0 -+ 103) the corrected algorithm 

----EQ(1.3Ila=Z) 
-EQG?.3l(a=2) 

10 I 1 I 

1 10 102 1 

a = 4AtIAx2 

FIG. 4. Comparison of performance of the Peaceman-Rachford scheme, (Eq. (1.3), a = 2) with new 
algorithm, (Eq. (2.3), a = 2). 
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tends to converge to steady state in the same number of steps independently of the 
mesh size. 

So far we have shown the various comparisons for the Douglas-Gunn algorithm 
(g = 1). In Fig. 4, we repeat the numerical experiment of Fig. 3 for the c( = 2 case 
(Peaceman-Rachford). It is seen that the corrected algorithm (2.3) with r = 2 gives 
the same kind of improvement as for the c1= 1 case as predicted by the theory for 
large cr. 

Next, the corrected algorithm (2.3): with r = 1, was applied to problem with 
mixed Neumann Dirichlet data. A Neumann condition U, = 0 was imposed on one 
edge. Dirichlet data of linear segments were given on the opposite side. On the 
other two edges were imposed parabolas, which joined the Neumann edge 
smoothly. The results are shown in Fig. 5. Note that both the uncorrected and 
corrected schemes perform better than under the fully Dirichlet boundary con- 
ditions. Also recall that the theory is based on vanishing deviations on all boun- 
daries and is therefore presumably applicable only to the Dirichlet problem. 

It is well known that the most efticient way of reaching steady state, on a uniform 
mesh via the standard AF-schemes, is to USC a cyclical sequence of time-steps [IO]. 
It might be interesting to check this point for the new corrected algorithm (2.3). 
Since, as we have seen, the corrected algorithm displays a convergence behaviour 

O= 4AliAx* 

FIG. 5. Effect of mixed Dirichlet-Newmann houndary conditions on performance of standard 
new algorithms. 

and 

581!6711-2 
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which is insensitive to (T (for large G), we tried a sequence of only 2 alternating 
time-steps, one corresponding to small c(n= 1) and one to large 0. The results for 
grids of 16 x 16 and 32 x 32 are shown in Table I for the solution of the CY = 2 case. 
Column 1 shows the number of iterations 12 necessary to converge to steady state 
with residual tolerance of lo-*, for the case of the standard Peaceman-Rachford 
AD1 solver with the constant time-step taken at the appropriate optimal 0. 
Column 2 indicates the improvement when the new algorithm is applied at its 
optimal cr. (Note, however, from Fig. 4 that the performance of the scheme is insen- 
sitive to B above gopt. ) This improved timing still does not match the cyclical time- 
step results applied to the standard scheme as given in Column 4. We then tried the 
alternating time-step sequence mentioned above, see Column 3. While an 
additional improvement was achieved, it still does not quite match the cyclical 
time-step method of solution when applied to this problem of uniform mesh. 

Finally, we applied the various algorithms and methods of solution to the case of 
a stretched grid (N= 17). The problem has Dirichlet data on the square with boun- 
dary conditions such that they vanish at the corners and rise linearly to the mid- 
points of the sides of the square. The discontinuities of the slopes assure the 
presence of many frequencies in the problem. The grid was stretched through the 
transformations, 

xj= 7c(4z1)[z1 + v - (z; + v*pq, Odj<N, 

yk = 4z2)[z2 + v - (z; + v*)l’*], Odk<N, 
(3.1) 

where 

z1 = tanhh’ Xj, 

z2 = tanh-’ Y,. 
(3.2) 

Note that 1 > X, Y > -1 for 0 6 x, y < rc. One may now view the problem as either 
being solved in the physical plane with the finite differencing done on a stretched 
grid, or equivalently, as being solved in the X-Y plane, with the governing equation 
having variable coefficients and the differencing done on a uniform mesh. We have 
chosen to use the latter approach in coding the problem. The transformation (3.1) 
clusters the points exponentially near the lines x = n/2, y = 7r/2, and leads to a mesh 

TABLE I 

Eq. (2.3) CI = 2, y = .8 Eq. (1.3) (~=2) 
Eq. (1.3) Eq. (2.3) Alternating time Cyclical time 

N (c(=2) @=2;y=O.8) step sequence step sequence 

17 22 15 10 7 
33 42 19 14 9 
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TABLE II 

17 

0.5 

1.5 
2 
2.5 

3.5 
4 
4.5 

IO 

Max cell 
aspect 
ratio 

2.45 40 16 16 16 25 
7.91 73 23 33 16 25 

14.72 104 31 74 16 34 
22.09 133 38 133 21 45 
29.70 160 44 209 24 54 
37.49 1x5 49 301 28 61 
45.32 208 55 4OY 29 70 
53.20 230 58 533 32 78 
61.08 251 62 677 32 X5 
6Y.00 271 65 834 34 90 

148.50 414 77 337 55 141 

Eq. (1.3) 
(2 = 2) 

Eq. (2.3) 
(5( = 2) 

Eq. (1.3) Eq. (2.3) 
(r-2) (a = 2) 

Cyclical time Cyclical time 
step sequence step scquerKv 

Eq. (1.3) 
(z-2) 

I.,, = cons:ant 

that has some very high “aspect-ratio” (LIx,,!LIJ~) cells; for example, with v = 10, 
A.x,,~:‘Ay,~~ 2 148. Table II summarizes the results for the r = 2 case. Column 1 gives 
the iteration count for the standard AD1 Peaceman -Rachford scheme for the 
optimum At which was found experimentally. In Column 2, the tabulation is for 
corrected algorithm with 7 = 0.8 and an optimal time-step, also found experimen- 
tally, although the results were much less sensitive to changes in clt in this case. 
Column 3 gives the results for a cyclic time sequence chosen on the basis of a 
uniform grid applied to the standard 2 = 2 scheme. As can be seen, the results 
deteriorate rapidly with the stretch ratio. The same time-step sequence, although 
not optimal for the nonuniform mesh when applied to the new corrected algorithm 
(2.3) with c( = 2, leads to substantially improved results; see Column 4. Since some 
investigators choose to converge to steady state not by using a constant AI over the 
field, but by employing a constant i, = At,,/Ax, AL./, , we tried this approach coupled 
with the cyclic time-step sequence; see Column 5. First, it should be observed that 
the results quoted in this column arc not as efficacious as those given in Column 4, 
although they do represent an improvement over those given in Column 3. 
Moreover, this approach of using constant J., was found experimentally not to be 
unconditionally stable and we were not able to get any results for v > 20. This is 
true for both the standard and the new corected algorithm. 

SUMMAKY 

The following main results were obtained in this paper: 
The convergence to steady state of parabolic AD1 solvers, such as the 

Douglas-Gunn or the PeacemanRachford algorithms, is analyzed in terms of the 
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&-norm of the residual. This approach, which assumes the presence of many fre- 
quencies and averages over their spectrum, turns out to be successful in predicting 
the dependence of the number of iterations needed to converge to steady state on 
the Courant number. 

A new corrected AD1 algorithm has been devised which has the following proper- 
ties: 

(a) Its construction necessitates only the addition of the same explicit term to 
all existing AF-codes. 

(b) It is robust in the sense that it need not be fine-tuned for different mesh 
sizes, different grid stretchings, mixed Dirichlet-Neumann boundary conditions, etc. 

(c) The rate of convergence to steady state is substantially improved and is 
insensitive to the Courant number for a large range of (T. 

(d) The correction term appears to largely remove the effect of grid 
stretching, allowing straightforward application of uniform grid techniques (e.g., 
cyclic time-steps) to stretched grid problems. 

(e) The method of derivation is easily extended to the three-dimensional case. 
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